High Efficiency 4-Channel HB LED Driver with I^{2} C Interface and Phase-Shifted PWM Dimming

POWER MANAGEMENT

Features

- Input Voltage - 4.5 V to 27 V
- Output Voltage - Up to 50 V
- Step-up (Boost) Controller

■ Ultra-Fast Transient Response (<100 $\mathrm{\mu s}$)

- Programmable Switching Frequency
- Linear Current Sinks
- 4 Strings, up to $120 \mathrm{~mA} /$ String
- Current Matching $\pm 1 \%$
- Current Accuracy $\pm 2 \%$
- PWM Dimming
- String-by-String Phase Shifting
- Input Dimming Frequency $100 \mathrm{~Hz}-30 \mathrm{kHz}$
- User Selectable 9 or 10-Bits Dimming Resolution
- 5-Bits Analog Dimming
- $1^{2} \mathrm{C}$ Interface
- Fault Status - Open/Short LED, UVLO, OTP
- Device Control: PLL Setting
- Protection Features
- Open/Shorted LED(s) and adjustable OVP
- Over-Temperature and UVLO Shutdown Protection
- 4 mm X 4mm 20-pin QFN Package

Applications

- Ultrabooks ${ }^{\text {TM }}$, All-in-One PCs, Monitors, AutomotiveDisplay Backlighting
- Backlighting for Mid-Size Displays

Description

The SC5014 is a 4-channel, highly integrated, high-efficiency step-up (boost) HB LED driver designed to reduce the thickness of mid-size LCD displays. It features a wide input voltage range (4.5 V to 27 V), phase-shifted PWM dimming, analog dimming, a flexible output configuration, an $I^{2} \mathrm{C}$ interface, and numerous protection features.
The SC5014 exhibits 2% to 4% higher efficiency when using the same size inductors as existing LED drivers. But, unlike existing devices, it can also operate with inductors that are up to $10 x$ smaller without sacrificing efficiency. This part can also use very low-profile inductors (as small as $2.2 \mu \mathrm{H}, 1 \mathrm{~mm}$ height), which allows LED drivers to be built directly into the LCD panel to enable ultra-thin displays.
The boost controller, with programmable switching frequency from 200 kHz to 2.2 MHz , maximizes efficiency by dynamically minimizing the output voltage while maintaining LED string current accuracy. It provides excellent line and load response with no external compensation components. An external resistor adjusts the current from 20-120mA per string. It also features PWM dimming resolution of 9 or 10-bits (user selectable) over a dimming frequency from 100 Hz to 20 kHz , synchronized to the boost oscillator. String-by-string phase shifting reduces the demand on the input/output capacitance, decreases EMI, and improves dimming linearity.

Typical Application Circuit

Pin Configuration

Marking Information

5014
yyWW
XXXXX
XXXXX
nnnn $=$ Part Number
yyww $=$ Date code
xxxxx $=$ Semtech Lot No.
xxxxx $=$ Semtech Lot No.

Ordering Information

Device	Package
SC5014MLTRT ${ }^{(1)(2)}$	MLPQ-20 4×4
SC5014EVB	Evaluation Board

Notes:
(1) Available in tape and reel only. A reel contains 3,000 devices.
(2) Lead-free packaging only. Device is WEEE and RoHS compliant, and halogen free.
Absolute Maximum Ratings (refer to PGND)
VCC Pin (V) -0.3 to +6.0
VIN, IO1 to IO4 (V). -0.3 to +30
DRVN, OVP, CS, EN, UVLO, SCP, REF, FLT (V) -0.3 to +6.0
FSET, CPLL, SCL, SDA, ISET, PWMI (V)

\qquad
-0.3 to +6.0
PGND to AGND (V) -0.3 to +0.3
ESD Protection Level ${ }^{(1)}(\mathrm{kV})$ 2
Recommended Operating Conditions
Ambient Temperature Range (${ }^{\circ} \mathrm{C}$)........ $-40 \leq \mathrm{T}_{\mathrm{A}} \leq+85$VIN (V)4.5 to 27
IO1 to IO4 Current per String (mA) 125 (max)
Thermal Information
Thermal Resistance, Junction to Ambient ${ }^{(2)}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ 32
Maximum Junction Temperature (${ }^{\circ} \mathrm{C}$) $+150$
Storage Temperature Range (${ }^{\circ} \mathrm{C}$) -65 to +150
Peak IR Reflow Temperature (10s to 30s) (${ }^{\circ} \mathrm{C}$) $+260$

Exceeding the above specifications may result in permanent damage to the device or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not recommended.

NOTES:
(1) Tested according to JEDEC standard JESD22-A114-B.
(2) Calculated from package in still air, mounted to 3×4.5 in, 4-layer FR4 PCB with thermal vias under the exposed pad per JESD51 standards.

Electrical Characteristics

Unless noted otherwise, $T_{A}=25^{\circ} \mathrm{C}$ for typical, $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{j}<85^{\circ} \mathrm{C}$ for min and max. $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{R}_{\text {ISET }}=25.5 \mathrm{~K} \Omega, \mathrm{R}_{\text {FSET }}=100 \mathrm{~K} \Omega$.

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Input Supply						
$\mathrm{V}_{\text {cc }}$ Supply Voltage	$\mathrm{V}_{\text {cc }}$		4.5		5.5	V
V_{cc} Under-Voltage Lockout Threshold	$\mathrm{V}_{\text {cc-uvLO(TH) }}$	V_{cc} Voltage Rising		4.2	4.4	V
V_{cc} Under-Voltage Lockout Hysteresis	$\mathrm{V}_{\text {cc-uvioothys) }}$	V_{cc} Voltage Falling		180		mV
V_{cc} Quiescent Supply Current	$\mathrm{I}_{\text {cc(0) }}$	$\mathrm{EN}=5 \mathrm{~V}$, Switching, No Load		2		mA
$\mathrm{V}_{\text {cc }}$ Supply Current in Shutdown	$\mathrm{I}_{\text {cC(SD) }}$	$\mathrm{EN}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {Uvio }}$ Under-Voltage Lockout Threshold	$\mathrm{V}_{\text {UvLO(TH) }}$	UVLO Pin Voltage Rising	1.18	1.23	1.28	V
$\mathrm{I}_{\text {ULLO }}$ Under-Voltage Lockout Hysteresis	$\mathrm{I}_{\text {UvLo(HYS) }}$	UVLO Pin Voltage Falling	7	10	13	$\mu \mathrm{A}$
$\mathrm{V}_{\text {REF }}$ Bandgap Voltage	$\mathrm{V}_{\text {REF }}$		1.20	1.23	1.26	V
External FET Gate Drive						
DRVN High Level	$\mathrm{V}_{\text {DRVV(H) }}$	100 mA from DRVN to GND	$\mathrm{V}_{\mathrm{cc}}-0.5$	$\mathrm{V}_{\text {cc }}-0.2$		V
DRVN Low Level	$\mathrm{V}_{\text {drVN(L) }}$	-100 mA from DRVN to V_{cc}		0.2	0.5	V
DRVN On-Resistance	$\mathrm{R}_{\text {DRVN }}$	DRVN High or Low		2	5	Ω
DRVN Sink / Source Current	$\mathrm{I}_{\text {dRVN }}$	DRVN Forced to 2.5 V		1		A
Boost Converter						
CS Current Limit Threshold	$\mathrm{V}_{\text {CSILIM) }}$		0.36	0.40	0.44	V
Soft-Start Time ${ }^{(1)}$	$\mathrm{t}_{\text {ss }}$	From EN to End of Soft-Start		4.4		ms

Electrical Characteristics (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Boost Oscillator Frequency	$\mathrm{F}_{\text {sw }}$	$\mathrm{R}_{\text {FSET }}=100 \mathrm{k} \Omega$	0.85	1	1.15	MHz
Boost Oscillator Frequency	$\mathrm{F}_{\text {osc }}$	$\mathrm{R}_{\text {FSET }}$ Varies	0.2		2.2	MHz
Maximum Duty Cycle	$\mathrm{D}_{\text {MAX }}$		88	92		\%
Control Signals: EN, PWMI, SDA, SCL						
High Voltage Threshold	V_{H}	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$ to 5.5 V	2.1			V
Low Voltage Threshold	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$ to 5.5 V			0.8	V
SDA Output Low	$\mathrm{V}_{\text {SDAL }}$	- 6 mA from $\mathrm{V}_{\text {cc }}$ to SDA			0.3	V
Pin Leakage Current	$\mathrm{I}_{\text {Leak }}$	$\mathrm{V}_{\text {EN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {PWMI }}=\mathrm{V}_{\text {ISET }}=\mathrm{V}_{\text {FSET }}=\mathrm{V}_{\text {SDA }}=\mathrm{V}_{\text {SCL }}=5.0 \mathrm{~V}$	-1		1	$\mu \mathrm{A}$
PWM Dimming Input						
PWMI Input Dimming Frequency	$\mathrm{F}_{\text {PWMI }}$		100		30k	Hz
PWMI Input Resolution		$100 \mathrm{~Hz}<\mathrm{F}_{\text {PWMI }}<10 \mathrm{kHz}$		10		bits
		$10 \mathrm{kHz}<\mathrm{F}_{\text {PWMI }}<20 \mathrm{kHz}$		9		bits
Over-Voltage Protection						
OVP Trip Threshold Voltage	$\mathrm{V}_{\text {ovp(tilG) }}$	OVP Rising	1.1	1.2	1.3	V
OVP Hysteresis	$\mathrm{V}_{\text {ovp(HYS) }}$	OVP Falling		10		mV
OVP Leakage Current	$\mathrm{I}_{\text {OVP(LEAK }}$	$\mathrm{OVP}=5 \mathrm{~V}$		0.1	1	$\mu \mathrm{A}$
Current Sink (IO1 to IO4)						
IOx Dimming Minimum Pulse Width	$\mathrm{T}_{\text {PWM(MIN) }}$	$F_{\text {PWM(LED) }}=100 \mathrm{~Hz}-30 \mathrm{kHz}$		300		ns
ISET pin Voltage	$V_{\text {ISET }}$			1.23		V
Regulation Voltage	$V_{\text {IOn(REG) }}$	Voltage of Regulating String		0.9		V
Current Sink Disable Threshold	$\mathrm{V}_{\text {IOn(0)IS }}$	Checked at Power-up	0.6			V
Current Sink Rise/Fall Time ${ }^{(1)}$	$\mathrm{t}_{\text {RISE/FALL }}$	Rising Edge from 10% to 90% of $\mathrm{I}_{\text {(n) }}$		25		ns
LED Current Accuracy	$\mathrm{I}_{\text {On(ACC\%) }}$	PWMI $=100 \%, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	98	100	102	mA
LED Current Matching ${ }^{(2)}$	$\mathrm{I}_{\text {On(MATCH) }}$	PWMI $=100 \%, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			± 1.0	\%
		PWMI $=100 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$			± 2.0	\%
$\mathrm{I}_{\text {on }}$ Off Leakage Current	$\mathrm{I}_{\text {On(LEAK) }}$	$\mathrm{PWMI}=0 \mathrm{~V}, \mathrm{EN}=0 \mathrm{~V}, \mathrm{~V}_{101}=25 \mathrm{~V}$		0.1	1	$\mu \mathrm{A}$
IO Switching Frequency	$\mathrm{F}_{\text {PWM(10) }}$	FAST_FREQ $=0$		10		kHz
		FAST_FREQ $=1$ (Default Setting)		20		
Phase Delay Time Between IO Pins (IO1 to IO4)	t_{PD}	FAST_FREQ = 1 (Default Setting) $t_{\text {PD }}=(1 / 4)^{*}\left(1 / F_{\text {PWM(IO) }}\right), 4$ Strings On		12.5		$\mu \mathrm{s}$
PWM Output Resolution		$\mathrm{F}_{\text {PWM(10) }}=10 \mathrm{kHz}$		10		bits
		$\mathrm{F}_{\text {PWM(10) }}=20 \mathrm{kHz}$		9		

Electrical Characteristics (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Fault Protection						
LED Short-Circuit Protection Threshold	$\mathrm{V}_{\text {IOn(SCP) }}$	R_{4} and $\mathrm{R}_{5}{ }^{(3)}$	17 xV SCP	$20 \times V_{\text {SCP }}$	$23 x V_{\text {SCP }}$	V
LED Open-Circuit Protection Threshold	$\mathrm{V}_{\text {IO_OCP }}$			0.2		V
LED Short-Circuit Fault Delay	$\mathrm{t}_{\text {SCPIDELAY) }}$	$\mathrm{V}_{\text {ovp }}$ Set to 1.5V, FLT Goes Low		1		$\mu \mathrm{s}$
FLT Pin Leakage Current	$\mathrm{I}_{\text {FLTLLEAK) }}$	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\text {FITT }}=5.0 \mathrm{~V}$	-1		1	$\mu \mathrm{A}$
FLT Output Low	$\mathrm{V}_{\overline{\text { FIT (LOW) }}}$	-5 mA from FLT to $\mathrm{V}_{\text {cc }}$			0.3	V
Over-Temperature Protection						
Thermal Shutdown Temperature	$\mathrm{T}_{\text {отр }}$			150		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis	$\mathrm{T}_{\text {отP-H }}$			10		${ }^{\circ} \mathrm{C}$
$1^{2} \mathrm{C}$ Control Interface: SDA, SCL Timing Specifications						
SCL Clock Frequency	$\mathrm{F}_{\text {SLL }}$				400	kHz
SCL Clock Low Period	$\mathrm{t}_{\text {Low(SCL) }}$		1.3			$\mu \mathrm{s}$
SCL Clock High Period	$\mathrm{t}_{\text {HIGHISCL) }}$		0.6			$\mu \mathrm{s}$
Hold Time Start Condition	$\mathrm{t}_{\text {HD(START) }}$		0.6			$\mu \mathrm{s}$
SDA Setup Time	$\mathrm{t}_{\text {SUISDA }}$		100			ns
SDA Hold Time	$\mathrm{t}_{\text {HD(SDA }}$		0		0.9	$\mu \mathrm{s}$
Setup Time Stop Condition	$\mathrm{t}_{\text {SU(STOP) }}$		0.6			$\mu \mathrm{s}$
Bus Free Time Between Stop \& Start	t_{BF}		1.3			$\mu \mathrm{s}$

Notes:

(1) Ensured by design and characterization, not production tested.
(2) LED current matching for 4 channels is defined as the largest of the two numbers, i.e., (MAX-AVG)/AVG and (AVG-MIN)/AVG; where MAX is the maximum LED channel current, MIN is the minimum LED channel current and AVG is the average of the 4 LED channel currents.
(3) Refer to the application circuit on page 23, Figure 2.

Typical Characteristics

Backlight Efficiency vs. Input Voltage

Backlight Efficiency vs. LED String Current

PWM Dimming Linearity with Phase Shift

Backlight Efficiency vs. Input Voltage

Backlight Efficiency vs. LED String Current

PWM Dimming Linearity with Phase Shift

Typical Characteristics (continued)

LED String Current Matching vs. Temperature

Switching Frequency vs. $\mathrm{R}_{\text {FSET }}$

LED String Current vs. Analog Dimming Control Register (IDAC) Value

LED String Current vs. $\mathrm{R}_{\text {ISET }}$

LED String Current Accuracy vs Temperature

VIN Start Up

Typical Characteristics (continued)

ED Current Fade In/Out (Logarithmic)

Line Transient Response

LED Open Circuit Protection
Starting with one LED string open-circuit

Load Transient Response
PWMI(10KHz)=98\% to 2%, VIN $=12 \mathrm{~V}, 120 \mathrm{~mA} / \mathrm{CH}$ X 4

Time ($100 \mathrm{~ms} / \mathrm{div}$)

Typical Characteristics (continued)

LED Dimming Without Phase Shift

LED Dimming Without Phase Shift

Analog Dimming Transient via $I^{2} \mathrm{C}$ $60 \mathrm{~mA} / \mathrm{CH}$ to $120 \mathrm{~mA} / \mathrm{CH}$

LED Dimming With Phase Shift

Analog Dimming Transient via $\mathrm{I}^{2} \mathrm{C}$ $120 \mathrm{~mA} / \mathrm{CH}$ to $60 \mathrm{~mA} / \mathrm{CH}$

Pin Descriptions

Pin \# (QFN)	Pin Name	Pin Function
1	UVLO	Input under-voltage lockout pin — Device is disabled when this pin is less than 1.23 V (nominal). Add a resistor divider from this pin to the input voltage and AGND, respectively.
2	SCP	Short-circuit LED protection programming pin - Shorted LED protection disables the individual channel when the current sink voltage exceeds the programmed voltage threshold. Adding a resistor divider from this pin to REF and PGND programs the shorted-LED protection up to $20 x$ the $\mathrm{V}_{\text {SCP }}$ voltage. Pulling the pin high to VCC disables the SCP feature on all channels.
3	REF	1.23 V reference voltage output pin - Connect a $1 \mu \mathrm{~F}$ ceramic bypass capacitor from this pin to ground.
4	FSET	Step-up (boost) frequency set pin - Connect a resistor from this pin to ground to set the frequency from 200 kHz to 2.2 MHz .
5	CPLL	Compensation for the internal PLL - Connect a compensation resistor and capacitor from this pin to ground. This pin can be left floating if not used.
6	SCL	$1^{2} \mathrm{C}$ serial clock input - This pin must be connected to ground if not used.
7	SDA	$1^{2} \mathrm{C}$ serial data input - This pin must be connected to ground if not used.
8	ISET	LED current programming pin - Connect an external resistor to ground to program the current in the LED strings. For more details please refer to LED String Peak Current Programming on page 13.
9	FLT	Logic low fault status pin — Open-drain output is latched low when fault condition is detected: Open/Short LED, Shorted String, OVP or OTP. Fault status can be reset by removing fault condition(s) and toggling the EN, VCC or UVLO pins. This pin can be left floating if not used.
10	PWMI	LED string PWM dimming control input.
$11 \sim 14$	104 ~ 101	Regulated current sink LED channel 4 to channel 1 respectively - Connect the related IO pin to the cathode of the bottom LED in string 4 to string 1 respectively. Connect the related IO pin to ground to disable the related LED string during power on.
15	OVP	Over-voltage feedback pin — Over-voltage activated when pin voltage exceeds 1.2 V . Use a resistor divider tied to the output and GND to set the OVP level.
16	CS	Step-up (boost) switch current sense pin — Connect a resistor from this pin to ground for current sense - utilized in peak current mode control loop and over-current sense circuitry.
17	PGND	Power ground - Tie this pin to the power ground plane close to input and output decoupling capacitors.
18	NDRV	Gate drive for the external step-up (boost) N-Channel MOSFET.
19	VCC	Input bias voltage supply for the IC — Accepts 4.5-5.5V inputs. Add a $1 \mu \mathrm{~F}$ or larger ceramic bypass capacitor from this pin to ground.
20	EN	Logic high enable pin — Pull logic high to enable the device or pull low to disable and maintain low shutdown current.
-	PAD	AGND thermal pad for heatsinking purposes - It should be connected to ground plane for proper circuit operation.

Block Diagram

Applications Information

General Description

The SC5014 contains a high frequency, current-mode, internally compensated boost controller with 4 constant current sinks for driving LED strings. The LED current for all strings is programmed by an external resistor. The boost converter operates to maintain minimal required output voltage for regulating the LED current to the programmed value. A typical backlight application uses 3 to 14 LEDs per each string, with current driven up to 120 mA . The unique control loop of the SC5014 allows fast transient response in dealing with line and load disturbances. The SC5014, operating with an external power MOSFET, regulates the boost converter output voltage based on the instantaneous requirement of the 4 string current sources. This provides power to the entire lighting subsystem with increased efficiency and reduced component count. It supports PWM dimming frequencies from 100 Hz to 30 kHz and the supply current is reduced to 2 mA typical when all LED strings are off.

Start-Up

When the EN pin is pulled up high ($>2.1 \mathrm{~V}$), the device is enabled and the UVLO and VCC pin voltages are checked. The VCC voltage has fixed under-voltage rising and falling trip points. If the VCC pin is higher than 4.2 V and the UVLO pin voltage is greater than 1.23 V , the SC5014 goes into a start-up sequence. The UVLO pin voltage can be used to program the input power source voltage VIN turn-on threshold and its hysteresis (refer to the detailed application circuit on page 23 , Figure 2) as shown by the following equations:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{IN} _ \text {Turnon }[\mathrm{V}]=1.23 \times\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) / \mathrm{R}_{1}} \\
& \mathrm{~V}_{\mathrm{IN} _ \text {Hysteresis }}[\mathrm{V}]=10^{-5} \times \mathrm{R}_{2}[\Omega]
\end{aligned}
$$

In the next phase, the SC5014 checks each IO pin to determine if the respective LED string is enabled. Each IO pin is pulled up with a $100 \mu \mathrm{~A}$ current source. If any IO pin is connected to ground, it will be detected as an unused string, and will be turned off. This unused string checking procedure typically takes 1 ms . After this, the SC5014 enters into a soft-start sequence.

The soft-start function helps to prevent excess inrush current through the input rail during start-up. In the SC5014, the soft-start is implemented by slowly ramping up the reference voltage fed to the error amplifier. This closed loop start-up method allows the output voltage to ramp up without any overshoot. The duration of the soft-start in the SC5014 is controlled by an internal timing circuit, which is used during start-up and is based on the boost converter switching frequency. For example, with switching frequency at 1 MHz , it is 8 ms typical and becomes 4 ms typical when the switching frequency is 2MHz.

If the PWM voltage goes low while the SC5014 is in softstart operation, the SC5014 switches to standby mode, where the external power MOSFET and the LED current sources will be turned off immediately. The internal softstart timer is turned off and the soft-start value is saved. When the PWM voltage goes high again, the soft-start resumes from the previously saved value.

Each LED current source (IO1 to IO4) tries to regulate the LED current to its set point. The control loop will regulate the output voltage such that all the IO pin voltages are at least 0.9 V typical.

Shutdown

When the EN pin is pulled down below 0.8 V , the device enters into shutdown mode. In this mode, all the internal circuitry is turned off and the supply current is less than $1 \mu \mathrm{~A}$ (max).

In the scenario where the EN pin voltage is high, but VCC voltage falls below the respective UVLO threshold, the SC5014 goes into a suspend mode. In this mode, all the internal circuitry except the reference and the oscillator are turned off.

Thermal Shutdown (TSD)

If the thermal shutdown temperature of typical $150^{\circ} \mathrm{C}$ is reached, the boost converter and all IO current sources are turned off. The $\overline{\text { FLT }}$ pin is forced low in this condition. When the temperature falls below the TSD trip point by $10^{\circ} \mathrm{C}$, the SC5014 will restart following the start-up sequence as described before. The $\overline{\mathrm{FLT}}$ pin is latched and will stay low, it is reset by cycling the EN, VCC or UVLO.

SEMTECH

Applications Information (continued)

Boost Converter Operation

The SC5014 includes a boost controller with programmable switching frequency. It applies a current-mode control method with an integrated compensation loop as shown in the diagram below. The clock (see block diagram on page11) from the oscillator sets the latch and turns on the external power MOSFET, which serves as the main power switch. The current flowing through this switch is sensed by the current sense resistor in series with the switch. The sensed switch current is summed with the slope-compensated ramp and fed into the modulating input of the PWM comparator. When the modulating ramp intersects the error amplifier output (COMP), the latch is reset and the power MOSFET is turned off. The sense resistor also sets the peak current limit of the power MOSFET, I ${ }_{\text {OCP }}$ using the following equation:

$$
\mathrm{I}_{\mathrm{OCP}}[\mathrm{~A}]=0.4 / \mathrm{R}_{\mathrm{CS}}[\Omega]
$$

The current-mode control system contains two loops. For the inner current loop, the error amplifier (EA) output (COMP) controls the peak inductor current. In the outer loop, the EA regulates the output voltage for driving the LED strings.

Boost Converter Switching Frequency Selection

The resistor between FSET and GND sets the boost converter switching frequency (200 kHz to 2.2 MHz) using the following equation:

$$
\mathrm{f}_{\mathrm{sw}}[\mathrm{kHz}]=10^{5} / \mathrm{R}_{\mathrm{FSET}}[\mathrm{k} \Omega]
$$

A higher switching frequency allows the use of low-profile height inductors for space-constrained and cost-sensitive applications.

Over-Voltage Protection (OVP)

The SC5014 features programmable output over-voltage protection to prevent damage to the IC and output capacitor in the event of a LED string open-circuit. The boost converter output voltage is sensed at the OVP pin through the resistor voltage divider. The OVP trip threshold (refer to detailed application circuit on page 23, Figure 2) can be calculated using the following equation:

$$
\text { OVP Trip Voltage }[\mathrm{V}]=1.2 \mathrm{X}\left(\mathrm{R}_{11}+\mathrm{R}_{12}\right) / \mathrm{R}_{12}
$$

When the OVP pin voltage exceeds 1.2 V , the boost converter turns off and the FLT pin is pulled low. When the OVP pin voltage falls below the OVP threshold (falling), the boost converter restarts and the $\overline{\text { FLT }}$ pin is released. There is 10 mV hysteresis between the OVP pin threshold (falling) and the OVP pin threshold (rising). This results in an output voltage hysteresis expressed as:

$$
\text { Output OVP Hysteresis [mV] = } 10 \mathrm{X}\left(\mathrm{R}_{11}+\mathrm{R}_{12}\right) / \mathrm{R}_{12}
$$

LED Current Sink

The SC5014 provides 4 current sinks and each can sink up to 120 mA current. It incorporates LED string short-circuit protection (trip-level programmable; can be disabled) and LED string open-circuit protection.

LED String Peak Current Programming

LED string peak current (at 100\% dimming) can be set by selecting resistor $\mathrm{R}_{\text {ISET }}$, connected between ISET and GND. The relationship between $\mathrm{R}_{\text {ISET }}$ resistance and single LED string peak current is calculated using the following equation:

$$
\mathrm{I}_{\text {LED }}[\mathrm{mA}]=2 \times(1036 \times 1.23) / \mathrm{R}_{\text {ISET }}[\mathrm{k} \Omega]
$$

The string current can be programmed up to 120 mA .

Unused Strings

The SC5014 may be operated with less than 4 strings. In this mode of operation, all unused IO pins should be connected to ground. During start-up, these unused strings are detected and disabled while other active strings work normally, and $\overline{\text { FLT }}$ does not get pulled low.

Applications Information (continued)

LED Short-Circuit Protection (SCP)

The SC5014 features a programmable LED short-circuit protection (SCP). This allows the part to be customized based on the LED forward voltage $\left(V_{F}\right)$ mismatches between the LED strings. If one or more LEDs are detected as shortcircuited, the corresponding string will be latched off. The voltages on all IO pins are monitored to check if any IO pin exceeds the SCP trip point. The IO voltage for LED string(s) with faulty short-circuit LED(s) will be higher than other normal IO pin voltages. This LED short-circuit protection trip level (see detailed application circuit on page 23, Figure 2) is expressed by the following equation:

$$
\mathrm{V}_{\text {SCP_Tip }}[\mathrm{V}]=20 \times\left(1.23 \times R_{4}\right) /\left(R_{4}+R_{5}\right)
$$

If any IO pin voltage exceeds the trip voltage, the IO current sink will be latched off and the $\overline{\text { FLT }}$ will go low. This latch can be reset by cycling UVLO, VCC or EN. Other LED strings are unaffected and continue in normal operation. This protection will be disabled if SCP is tied to VCC.

There is a typical $10 \mu \mathrm{~s}$ SCP detection time in PWM dimming applications. If the PWM dimming on-time is less than the SCP detection time, the SCP cannot be enabled.

In many applications, LED strings are connected to the IO pins through a mechanical connector, which cannot support an electrical connection at specific times. This connection
might cause noise on the IO pins. If this noise is large enough, it may trigger a false SCP mode. Under such condition, a ceramic decoupling capacitor (100pF $\sim 8.2 n F$) between IO pin to ground can help prevent the SC5014 from entering the protection mode by false trigger. Or, simply disable this feature by connecting SCP pin to VCC pin.

LED Open-Circuit Protection

If any LED string becomes open, the respective IO pin voltage will be pulled to ground. Consequently, the internal COMP node (output of error amplifier) is driven high, which causes the boost output voltage to increase. The output voltage will be eventually clamped to a voltage set by the OVP resistor divider. Under this condition, the faulty string is latched off and the $\overline{\mathrm{FLT}}$ pin is pulled low. The boost voltage gets regulated to the voltage required to set all non-faulty IO pins above 0.9 V (typ). The remaining strings remain in normal operation. The $\overline{\mathrm{FLT}}$ and the fault-out LED current sink latch-off can be reset by cycling UVLO, VCC or EN.

LED Analog Dimming Control

The LED current in SC5014 can be dimmed via the 5-bit analog dimming register (register address: 0x02). The LED current can be adjusted in 32 steps from 0 mA to maximum value, which is determined by the $\mathrm{R}_{\text {ISET }}$ resistor.

Figure 1-LED PWM Dimming Control

Applications Information (continued)

The SC5014 has a unique DAC architecture which allows it to have excellent LED current accuracy and string-to-string matching over the entire DAC range.

The analog dimming method can be used in conjunction with PWM dimming to increase the dimming resolution. The fast loop response of the SC5014 allows the LED current to transition to a new value within 160μ s or so. Please refer to the graphs in the typical characteristics section.

LED PWM Dimming Control

The SC5014 supports three PWM dimming modes for controlling the brightness of the LEDs.

The dimming modes are:
(1) PWM direct,
(2) PWM indirect and
(3) $I^{2} C$ control

It provides flexibility in setting the duty cycle and frequency of the LED PWM signal. The PWM dimming mode is set through the device control register (register address: 0×01) DCR [1:0] bits. Refer to Table 1 for more details.

(1) PWM Direct Control

The PWM input needs to be held high for normal operation. PWM dimming can be achieved by cycling the PWM input at a given frequency where a "low" on the PWM input turns off all IO current sinks and a "high" turns on all IO current sinks. The PWM pin can be toggled by external circuitry to allow PWM dimming. In a typical application, a microcontroller sets a register or counter that varies the pulse width on a GPIO pin. The SC5014 allows dimming over a wide frequency range ($100 \mathrm{~Hz}-30 \mathrm{kHz}$) in order to allow compatibility with a wide range of devices. This includes the newest dimming strategies that avoid the audio band by using high frequency PWM dimming. In this manner, a wide range of illumination can be generated while keeping the instantaneous LED current at its peak value for high efficiency and color temperature. The SC5014 provides a 1000:1 dimming range at 1 kHz PWM frequency. The LED current sinks turn on/off very rapidly (<25ns, typical). This allows a wide dimming ratio. An additional advantage of PWM dimming is that it avoids in-rush currents when filling the boost output capacitor. Simply apply the PWM signal to the device at 10% duty for a millisecond or two, and in-rush current is reduced. This dimming time will vary based on the number of LEDs and the size of the output capacitor. This can be easily determined during testing and programmed into the microcontroller firmware.

Table 1 - LED Dimming Control Methods

PWM Dimming Mode	Register Settings DCR[1:0]	PWM Input Source	LED PWM Output		Phase Shift Option
			PWM Frequency	PWM Duty Cycle	
PWM Direct Control	00	PWMI Pin Input	Same as the PWMI Input (Range 100 Hz to 30 kHz)	Same as the PWMI Input	NO
PWM Indirect Control (Default Option)	01	PWMI Pin Input	Set via the FREQ Register (0×05) and FAST_FREQ Bit 10 kHz (max): FAST_FREQ=0 20 kHz (max): FAST_FREQ=1	Same as the Duty Cycle of the PWM Input	YES
$\begin{gathered} 1^{12} \mathrm{C} \\ \text { Control } \end{gathered}$	11	${ }^{12} \mathrm{C}$ Control	Set via the FREQ Register (0x05) and FAST_FREQ bit 10 kHz (max): FAST_FREQ=0 20 kHz (max): FAST_FREQ=1	Set Via the Duty Cycle Control Register ($0 \times 03,0 \times 04$) 10-Bits @ 10kHz Output 9-Bits @ 20kHz Output	YES

SEMTECH

Applications Information (continued)

(2) PWM Indirect Control

This is the default mode for LED PWM dimming in the SC5014. In this mode, the input signal applied on the PWM pin is passed through a duty cycle extractor block after the system has detected two successive duty cycles that are the same. The extractor measures the duty cycle of the PWM input, and, depending on the value of FAST_FREQ, the duty cycle is converted to a 9 -bit value (FAST_FREQ $=1$) or a $10-$ bit value (FAST_FREQ $=0$). This value is then passed to the PWM generator block as shown in Figure 1.

The LED PWM output frequency is set via the FREQ register (address 0x05) and the FAST_FREQ bit.

With FAST_FREQ $=0$, low dimming frequency option is selected and the PWM dimming frequency will be according to the following equation:

$$
\begin{aligned}
\text { PWM Dimming Frequency } & =\frac{10 \mathrm{MHz}}{1024 \times[\text { FREQ }[7: 0]+1]} \\
& =10 \mathrm{kHz}(\max)
\end{aligned}
$$

With FAST_FREQ $=1$, the high dimming frequency option is selected and the PWM dimming frequency is shown by the following equation:

$$
\begin{aligned}
\text { PWM Dimming Frequency } & =\frac{10 \mathrm{MHz}}{512 \times[\mathrm{FREQ}[7: 0]+1]} \\
& =20 \mathrm{kHz}(\max)
\end{aligned}
$$

The default option is FAST_FREQ $=1$. This gives 9-bit duty cycle resolution and up to 20 kHz dimming frequency range. The PWM input is usually generated by the system graphics processor. This mode allows the user to set the PWM output dimming frequency independent of the PWMI input.

If the PWM signal has jitter, the SC5014 provides an option to filter it out. Hysteresis is also provided by selecting the WND[1:0] bits in the DCR register (address 0x01). WND[1:0] bits set the window comparator such that if a change in the duty cycle is detected which is smaller than the set window, then it is ignored.

(3) $I^{2} \mathrm{C}$ Control

In $I^{2} C$ dimming mode (refer to Figure 1, page 14), both the output LED dimming duty cycle and the dimming frequency are set via the internal registers. The PWMI pin
should be connected to ground. In this mode, the LED dimming duty cycle is set via the duty cycle registers (addresses $0 \times 03,0 \times 04$); and the dimming frequency is set via the FREQ register (address 0×05) and the FAST_FREQ bit.

With FAST_FREQ $=0$, the LED duty cycle can achieve 10-bit resolution, $\mathrm{D}[9: 0]$, which is combined by two portions: (1) MSB portion - register address 0×03 [1:0] and (2) LSB portion - register address 0×04 [7:0] as shown below.

The dimming duty cycle with FAST_FREQ = 0 can be calculated as:

$$
\text { LED Dimming Duty Cycle }=\left\{\mathrm{D}[9: 0]_{\text {decima }}\right\} / 2^{10}-1
$$

With FAST_FREQ = 1, the LED duty cycle can achieve 9-bit resolution, $D[9: 1]$, which is combined by two portions: (1) MSB portion - register address 0×03 [1:0] and (2) LSB portion - register address 0×04 [7:1] as shown below.

The dimming duty cycle with FAST_FREQ = 1 can be calculated as:

$$
\text { LED Dimming Duty Cycle }=\left\{\mathrm{D}[9: 1]_{\text {decima }}\right\} / 2^{9}-1
$$

In both cases mentioned above, the duty cycle is fixed to be 0 when $\mathrm{D}[9: 0]$ is set as 0×00.

The PWM dimming frequency is controlled the same way as in "Indirect Control".

Applications Information (continued)

Phase-Shift PWM Dimming

The SC5014 provides an option for phase-shifted LED PWM dimming. This option is available in both PWMI indirect control and ${ }^{12} \mathrm{C}$ control. The phase-shift option is set by the PH_SHIFT bit in the Device Control Register (register address 0×01). This option delays the turn-on of the LED strings based on the number of the strings in operation (the number of the strings in operation is determined during the start-up). The delay time can be calculated by the following equation:
$\mathrm{T}_{\phi \text {-phase }}=\frac{1 / \mathrm{f}_{\mathrm{PWM}}}{\mathrm{N}}$,
$N=$ number of strings in operation
$\mathrm{f}_{\mathrm{PWM}}=$ LEDPWM dimming frequency
Phase-shift mode is disabled during the soft-start period. This allows the output to ramp up to the correct voltage in a controlled fashion.

Phase-shifting reduces the peak input current, decreases EMI and improves the dimming linearity. The figures in the Typical Characteristics Section on page 6 show the improvement in dimming linearity with phase-shifted versus non-phase-shifted dimming.

Backlight Fade-in and Fade-out Options

The SC5014 features an option for fade-in and fade-out brightness control, which allows a smooth transition from one brightness level to another.

Registers associated with these fading functions are shown in this section.

1. Fade Option (register address 0×09) - sets fade enable options, fade time, fade type.
2. Fade Rate (register address $0 \times 0 \mathrm{~A}$) - sets fade step size option.

The fade option register allows the user to select fading, choose between linear or logarithmic fading, and to set the fading time. The default setting is fading enabled with logarithmic mode. The fading time is determined by the LED PWM dimming frequency. The fade setting is shown in Table 2.

An example for calculating the fading time is shown in this section. Assuming LED PWM dimming frequency is 10 kHz , then 10 -bits are assigned for 1024 duty cycle settings.

Table 2 - Fade Setting

Duty Cycle Zone	Duty Cycle Range	Step Increment	Step Interval	Total Steps within the Range
1	0 to 511	1	2	512
2	512 to 767	1	1	256
3	768 to 1024	2	1	256

The time required to go from $10 \%(102 / 1024)$ to 90% (922/1024) duty cycle can be calculated using the following equation:
$\mathrm{T}_{\text {PWM }}=100 \mu \mathrm{~s}$ (with 10 kHz dimming frequency)
Cycle in Zone \#1 = (511 - Starting Duty Cycle) x [(Zone \#1 Step Interval) / (Zone \#1 Step Increment)]

Cycle in Zone \#2 = Total Steps in Zone \#2 x [(Zone \#2 Step Interval) / (Zone \#2 Step Increment)]

Cycle in Zone \#3 = (End Duty Cycle - 768) x [(Zone \#3 Step Interval) / (Zone \#3 Step Increment)]

In this case, the total cycle will be:

$$
\begin{aligned}
\text { Total cycle } & =2 \times(511-102)+1 \times 256+0.5 \times(922-768) \\
& =1151 \\
\text { Total Fading Time } & =\text { Total Cycle } \times T_{\text {pwM }} \\
& =1151 \times 100 \mu \mathrm{~S}=115.1 \mathrm{~ms}
\end{aligned}
$$

Time required to go from $10 \%(102 / 1024)$ to 90% ($922 / 1024$) duty cycle can be calculated using the following equation:
$\mathrm{T}_{\text {PWM }}=100 \mu \mathrm{~s}$ (PWMDimmingPeriod)
Total Cycle $=2 \times(511-102)+256+\frac{1}{2} \times(922-768)=1151$
Total Time $=1151 \times \mathrm{T}_{\text {Pwm }}=115.1 \mathrm{~ms}$

Table 3 - Fault Protection Descriptions

Type of Fault	User Disable?	Fault Criteria	Action on Fault		Recovery	
			Device	FLT pin (latching / non-latching	Condition(s)	FLT pin
Input Under-voltage at VIN (UVLO)	No	$\begin{aligned} & \mathrm{V}_{\text {IN }}<\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right) \\ & \times 1.23 \text { (rising) } \end{aligned}$	No Startup	Not Active	$\begin{gathered} \mathrm{V}_{\text {Uvo }}>1.23 \mathrm{~V} \\ \text { (rising) } \end{gathered}$	High
	No	$\begin{aligned} \mathrm{V}_{\text {IN }}<(1 & \left.+\mathrm{R}_{2} / \mathrm{R}_{1}\right) \times 1.23 \mathrm{~V}-\mathrm{I}_{\text {UvLO }} \\ & \times \mathrm{R}_{1} \text { (falling) } \end{aligned}$	Shutdown	Not Active	$\underset{\substack{\text { Uvoo } \\ \text { (rising) }}}{ }>1.23 \mathrm{~V}$	High
Input Under-voltage at VCC (UVLO)	No	$\begin{gathered} \mathrm{VCC}<4.2 \mathrm{~V} \\ \text { (rising) } \end{gathered}$	No Startup	Not Active	$\begin{gathered} \text { VCC }>4.2 \mathrm{~V} \\ \text { (rising) } \end{gathered}$	High
	No	$\begin{gathered} \mathrm{VCC}<4.0 \mathrm{~V} \\ \text { (falling) } \end{gathered}$	Shutdown	Not Active	$\begin{gathered} \text { VCC }>4.2 \mathrm{~V} \\ \text { (rising) } \end{gathered}$	High
Over-voltage Protection (OVP)	No	$\begin{gathered} \mathrm{V}_{\text {ovp }}>1.23 \mathrm{~V} \\ \quad \text { (rising) } \end{gathered}$	Regulate to OVP threshold: $\mathrm{I}_{\mathrm{o(n)}}=\text { "on" }$	Low (non-latching)	$\begin{gathered} \mathrm{V}_{\text {oup }}<1.22 \mathrm{~V} \\ \text { (falling) } \end{gathered}$	High on removal of fault condition
Over-current Protection (OCP)	No	$\mathrm{V}_{\text {cS }}>0.4 \mathrm{~V}$	Limit Q1 FET drain current < 0.4V/R9 $(\operatorname{typ}){ }^{(1)}$	High	$\mathrm{V}_{\mathrm{cs}}>0.4 \mathrm{~V}$	High
ShortedLED(s)	Yes, tie SCP to VCC	$\mathrm{V}_{\text {IO(n) }}>20 \times \mathrm{V}_{\text {SCP }}$	Device on: $\begin{gathered} \mathrm{I}_{\mathrm{O}(\mathrm{n})}=\text { "off" } \\ \text { Other } \mathrm{I}_{\mathrm{O}(\mathrm{AlI})}=\text { "on" } \end{gathered}$	Low (latching)	Replace Shorted LED(s) and Toggle EN, VCC or UVLO	High
		$\mathrm{V}_{\text {IO(AII) }}>20 \times \mathrm{V}_{\text {SCP }}$	Device latch-off; $\mathrm{I}_{\mathrm{oAlIII}}=\text { "off" }$	Low (latching)	Replace Shorted LED(s) and Toggle EN, VCC or UVLO	High
$\begin{aligned} & \text { Open } \\ & \text { LED(s) } \end{aligned}$	No	$V_{10(n)}<0.1 \mathrm{~V}$ and OVP event	Device on: $\begin{gathered} \mathrm{I}_{\mathrm{O}(\mathrm{n})}=\text { "off" } \\ \text { Other } \mathrm{I}_{\mathrm{O}(\mathrm{AlI})}=" \mathrm{on} " \end{gathered}$	Low (latching)	Replace Open LED(s) and Toggle EN, VCC or UVLO	High
		$\begin{aligned} & \quad \mathrm{V}_{\text {IOAIII }}<0.1 \mathrm{~V} \\ & \text { and OVP event } \end{aligned}$	Device latch-off; $\mathrm{I}_{\mathrm{oA} \text { (Al) }}=\text { "off" }$	Low (latching)	Replace Open LED(s) and Toggle EN, VCC or UVLO	High
Unused Strings	No	$\begin{gathered} \mathrm{V}_{\text {IOAII) }}<0.1 \mathrm{~V} \\ \text { (start up) } \end{gathered}$	Device on: $\begin{gathered} \mathrm{I}_{\mathrm{O}(\mathrm{n})}=\text { "off" } \\ \text { Other } \mathrm{I}_{\mathrm{O}(\mathrm{AlI})}=" \mathrm{on"} \end{gathered}$	High		
Over-Temperature Protection (OTP)	No	$\mathrm{T}_{\mathrm{J}}>150^{\circ} \mathrm{C}$ (typ)	Device off; $\mathrm{I}_{\mathrm{of(All})}=\text { "off" }$	Low (latching)	Satisfy $\mathrm{T}_{\text {HYS }}>10^{\circ} \mathrm{C}$; Device On; $\mathrm{I}_{\mathrm{OAlII}}=\text { "on"; }$ Toggle EN, VCC or	High

Note: Refer to the application circuit example for R_{1} and R_{2} on page 23, Figure 2.

Applications Information (continued)

Fault Protection

The SC5014 provides fault detection for low supply voltage, LED related faults, boost converter over-voltage and thermal shutdown. The open drain output pin ($\overline{\mathrm{FLT}}$) indicates a system fault. The nature of the fault can be read from the fault status resistor (register address: 0×00) via $I^{2} \mathrm{C}$ interface. Refer to Table 3 for a description of the Fault Protection Modes.

Other Possible Configurations

Depending on different application requirements, the SC5014 can also be easily configured to other topologies, such as the SEPIC configuration shown in Figure 4, page 24.

Li-Ion Powered Display Configuration

If a Li-lon powered display application is required, V_{cc} is needed to power with 5 V . However, $\mathrm{V}_{\text {IN }}$ can be set lower from 3 V to 4.2 V for example. An advantage of this type of configuration is that it provides higher efficiency. Please use Figure 3 on page 23 for reference.

High Output Voltage Configuration

If a high output voltage application is required, an additional external cascode MOSFET can be added on each IO pin to meet such requirement, please refer to Figure 5 on page 24 for reference.

In this case, the upper limit on the output voltage is mainly determined by the rating of the external MOSFET, heat dissipation, etc.

PCB Layout Considerations

The placements of the power components outside the SC5014 should follow the layout guidelines of a general boost converter. The Detailed Application Circuit is used as an example.

1. Capacitor (C2) should be placed as close as possible to the VCC and AGND to achieve the best performance.
2. Capacitor (C1) is the input power filtering capacitor for the boost. It needs to be tied to PGND.
3. The converter power train inductor (L 1) is the boost converter input inductor. Use wide and short traces connecting these components.
4. The output rectifying diode (D1) uses a Schottky diode for fast reverse recovery. Transistor (Q1) is the external switch. Resistor (R 9) is the switch current sensing resistor. To minimize switching noise for the boost converter, the output capacitor (C6) should be placed such that the loop formed by Q1, D1, C6 and R9, is minimized. The output of the boost converter is used to power up the LEDs. Use wide and short trace connecting Pin NDRV and the gate of Q1. The GNDs for R9 and C6 should be PGND. These components should be close to the SC5014.
5. Resistor (R8) is the output current adjusting resistor for IO1 through IO4 and should return to AGND. Place it next to the IC.
6. Resistor (R6) is the switching frequency adjusting resistor and should return to AGND. Place it next to the IC.
7. The decoupling capacitor (C3) for Pin REF should return to AGND. Place it next to the IC.
8. Resistors ($\mathrm{R} 4, \mathrm{R} 5$) form a divider to set the SCP level, R4 should return to AGND. Place it next to the IC.
9. Resistors ($R 2, R 1$) form a divider to set the UVLO level for UVLO pin. R1 should return to AGND. Place it next to the IC.
10. R11 and R10 form a divider to set the OVP level for VOUT, R10 should return to AGND. Place it next to the IC.
11. All the traces for components with AGND connection should avoid being routed close to the noisy areas.
12. An exposed pad is located at the bottom of the SC5014 for heat dissipation and analog ground. A copper area underneath the pad is used for better heat dissipation. On the bottom layer of the PCB another copper area, connected through vias to the top layer, is used for better thermal performance. The pad at the bottom of the SC5014 should be connected to AGND. AGND should be connected to PGND at a single point for better noise immunity.

Components Selection

Inductor Selection

The choice of the inductor affects the converter's steady state operation, transient response, and its loop stability. Special attention needs to be paid to three specifications of the inductor, its value, its DC resistance and saturation current. The inductor's inductance value also determines the inductor ripple current. The boost converter will operate in either CCM (Continuous Conduction Mode) or DCM (Discontinuous Conduction Mode) depending on its operating conditions. The inductor DC current or input current can be calculated using the following equation.

$$
\begin{aligned}
& \mathrm{I}_{\mathbb{N}}=\frac{\mathrm{V}_{\text {OUT }} \times \mathrm{I}_{\text {OUT }}}{\mathrm{V}_{\text {IN }} \times \eta} \\
& \mathrm{I}_{\mathbb{I N}}-\text { Input current; } \mathrm{I}_{\text {OUT }}-\text { Output current; } \\
& \mathrm{V}_{\text {OUT }}-\text { Boost output voltage; } \\
& \mathrm{V}_{\mathbb{I N}}-\text { Input voltage; } \\
& \eta-\text { Efficiency of the boost converter }
\end{aligned}
$$

Then the duty ratio under CCM is shown by the following equation.

$$
D=\frac{V_{\text {OUT }}-V_{I N}+V_{D}}{V_{\text {OUT }}+V_{D}}
$$

V_{D} - Forward conduction drop of output rectifying diode
When the boost converter runs under DCM ($\mathrm{L}<\mathrm{L}_{\text {boundary }}$), it has the advantages of small inductance and quick transient response; where as if the boost converter works under CCM ($\mathrm{L}>\mathrm{L}_{\text {boundary }}$), normally the converter has higher efficiency.

When selecting an inductor, another factor to consider is the peak-to-peak inductor current ripple, which is given by the following equation:

$$
\Delta \mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{IN}} \times \mathrm{D}}{\mathrm{f}_{\mathrm{SW}} \times \mathrm{L}}
$$

Usually this peak-to-peak inductor current ripple can be chosen between 30% to 50% of the maximum input DC current. This gives the best compromise between the inductor size and converter efficiency. The peak inductor current can be calculated using the following equation:

$$
I_{\text {L-pak }}=I_{\mathbb{I N}}+\frac{V_{\mathbb{I N}} \times D}{2 \times f_{\text {SW }} \times L}
$$

For most applications, an inductor with a value of $2.2 \mu \mathrm{H}$ to $22 \mu \mathrm{H}$ should be acceptable, (refer to the detailed application circuit on page 23, Figure 2). The inductor peak current must be less than its saturation rating. When the inductor current is close to the saturation level, its inductance can decrease 20% to 35% from the 0A value depending on the vendor specifications. Using a small value inductor forces the converter in DCM, in which case the inductor current ramps down to zero before the end of each switching cycle. It reduces the boost converter's maximum output current and produces a larger input voltage ripple. The DCR of the inductor plays a significant role for the total system efficiency and usually there is a trade-off between the DCR and size of the inductor. Table 4 lists some recommended inductors and their vendors.

Table 4. Recommended Inductors

Inductor	Vendor Website
HCM0703, 2.2uH~10uH	www.cooperindustries.com
IHLP-2525CZ-01, 4.7uH~10uH	www.vishay.com
MLPC0730L, 2.2uH~4.7uH	www.nec-tokin.com/english

Output Capacitor Selection

The next design task is targeting the proper amount of output ripple voltage due to the constant-current LED loads. Usually X5R or X7R ceramic capacitor is recommended. The ceramic capacitor minimum capacitance needed for a given ripple can be estimated using the following equation:

$$
\mathrm{C}_{\text {OUT }}=\frac{\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}\right) \times \mathrm{I}_{\text {OUT }}}{\mathrm{V}_{\text {OUT }} \times \mathrm{f}_{\text {SW }} \times \mathrm{V}_{\text {RIPPLE }}}
$$

Application Information (continued)

$V_{\text {RIPPLE }}$ - Peak to peak output ripple.
The ripple voltage should be less than 200 mV (pk-pk) to ensure good LED current sink regulation. For example, a typical application where $120 \mathrm{~mA} /$ channel current is needed, the total output current for 4 channels will be 480 mA , and $6 \mathrm{x} 4.7 \mu \mathrm{~F}$ capacitors are recommended.

During load transient, the output capacitor supplies or absorbs additional current before the inductor current reaches its steady state value. Larger capacitance helps with the overshoot/undershoot during load transient and loop stability.

Input Capacitor Selection

X5R or X7R ceramic capacitor is recommended for input bypass capacitor. A $1 \mu \mathrm{~F}$ capacitor is sufficient for the VCC input. Bypass the VIN input with a $10 \mu \mathrm{~F}$ or larger ceramic capacitor.

Output Freewheeling Diode Selection

Schottky diodes are the ideal choice for the SC5014 due to their low forward voltage drop and fast switching speed. Table 5 shows several different Schottky diodes that work properly with the SC5014. Verify that the diode has a voltage rating greater than the maximum possible output voltage. The diode conducts current only when the power switch is turned off. The diode must be rated to handle the average output current. A diode rated for 1A average current will be sufficient for most designs.

Table 5. Recommended Rectifier Diodes

Rectifier Diode	Vendor Website
DFLS140	www.diodes.com
SS14/15/16, SS24/25/26	www.vishay.com

External Power MOSFET Selection

The boost converter in SC5014 uses an external power MOSFET to regulate the output voltage and output power to drive LED loads. This boost switching structure has an advantage in that the SC5014 is not exposed to high voltage. Only the external power MOSFET, freewheeling diode and the inductor will be exposed to the output
voltage. The external power MOSFET should be selected with its voltage rating higher than the output voltage by minimum 30%. The current rating should be enough to handle the inductor peak current. Low $\mathrm{R}_{\mathrm{DS}}(\mathrm{On})$ MOSFETs are preferred for achieving better efficiency.

The GD (gate driver) on SC5014 provides 1A (peak) current driving capability which is suitable for most MOSFETs for high frequency operation. The average current required to drive the MOSFET is given by the following equation.

$$
I_{G A T E}=Q_{G} \times f_{S W}
$$

$$
Q_{G}-\text { Gate charge }
$$

The $R_{\text {DS(ON) }}$ and its RMS current $I_{S_{\text {_RMS }}}$ of the power MOSFET will generate the conduction loss using the following equation.

$$
P_{\text {COND }}=I_{S_{\text {_RMS }}}{ }^{2} \times R_{\text {DS(on) }}
$$

The MOSFET's switch loss can be calculated using the following equation.

$$
P_{\text {SW }}=1 / 2 \times V_{\text {IN }} \times I_{\text {L_PEAK }} \times f_{\text {SW }} \times\left(T_{\text {ON }}+T_{\text {OFF }}\right)
$$

Where $T_{\text {ON }}$ and $T_{\text {OFF }}$ are the MOSFET's on and off time and they can be estimated by the following equations.

$$
\mathrm{T}_{\mathrm{oN}}=\mathrm{t}_{\mathrm{r}}+\frac{\mathrm{Q}_{\mathrm{gd}}}{\left(5-\mathrm{V}_{\text {plateau }}\right) /\left(5+\mathrm{R}_{\mathrm{g}}\right)}
$$

$$
\mathrm{T}_{\text {OFF }}=\mathrm{t}_{\mathrm{f}}+\frac{\mathrm{Q}_{\mathrm{gd}}}{\mathrm{~V}_{\text {plateau }} /\left(5+\mathrm{R}_{\mathrm{g}}\right)}
$$

Where $t_{\rho}, t_{\rho} Q_{g d}$ and $V_{\text {plateau }}$ can usually be found from datasheet of the selected MOSFET. R_{g} is the resistance of the optional resistor connected in series on the gate of the MOSFET.

Components Selection (continued)

Current Sensing Resistor Selection

The switch current is sensed via the current sensing resistor, R_{CS}. The sensed voltage at this pin is used to set the peak switch current limit and also used for steady state regulation of the inductor current. The current limit comparator has a trip voltage of 0.4 V (typical). R_{CS} value is chosen to set the peak inductor and switch current using the following equation.

$$
\mathrm{I}_{\mathrm{sw}(\text { Peak })}=0.4 / \mathrm{R}_{\mathrm{CS}}
$$

The power dissipation in $\mathrm{R}_{\text {SNS }}$ can be calculated using the following equations.

$$
\begin{aligned}
& P_{R_{-} C S}=I_{R M S}^{2} \times R_{C S} \\
& I_{R M S}=D \times\left[I_{O} /(1-D)\right]^{2} \\
& I_{O}=\text { Output DC Current, } D=\text { Duty Cycle }
\end{aligned}
$$

For the typical application circuit shown in the detailed application circuit (page 23, Figure 2), the power dissipation on the sensing resistor is shown by the following equations.

Assuming $\mathrm{V}_{\text {IN }}=6 \mathrm{~V}$ and $\mathrm{V}_{\text {out }}=31.5 \mathrm{~V}$, thus $\mathrm{D}=81 \%$,

$$
P_{R_{-} c s}=0.81 \times(0.48 / 0.19)^{2} \times 0.08=0.414(\mathrm{~W})
$$

For this example, a $0.08 \Omega 1 \%$ thick-film chip resistor rated at 1 W can be used.

PLL Filter Component Selection

The detailed application circuit on page 23, Figure 2 shows the optimal R/C filter components for the PLL compensation. These are optimized for internal 1 MHz switching frequency. Please contact Semtech Power management Application Group if a different switching frequency is selected.

Figure 2—Application Circuit Example, 40 LED @ 100mA

Figure 3-Li-lon Powered Display Application Circuit Example, 20 LED @ 20mA

Figure 4- SEPIC Configuration

Figure 5-Cascode Configuration drives 80 LEDs@100mA

Serial Interface

The I'C General Specification

The SC5014 is a read-write slave-mode $I^{2} C$ device and complies with the NXP B.V. ${ }^{12}$ C standard Version 2.1, dated January 2000. The SC5014 has 11 user-accessible internal 8 -bit registers. The $I^{2} C$ interface has been designed for program flexibility, supporting direct format for write operation. Read operations are supported on both combined format and stop separated format. While there is no auto increment/decrement capability in the SC5014 ${ }^{2} \mathrm{C}$ logic, a tight software loop can be designed to randomly access the next register independent of which register you begin accessing. The start and stop commands frame the data-packet and the repeat start condition is allowed if necessary.

Limitations to the $I^{2} \mathrm{C}$ Specifications

The SC5014 only recognizes 7-bit addressing. This means that 10 -bit addressing and CBUS communication are not compatible. The device can operate in either standard mode ($100 \mathrm{kbit} / \mathrm{s}$) or fast mode ($400 \mathrm{kbit} / \mathrm{s}$).

Slave Address Assignment

The 7-bit slave address is 0101 111x. The eighth bit is the data direction bit. 0x5F is used for read operation and $0 \times 5 \mathrm{E}$ is used for write operation.

Supported Formats

The supported formats are described in the following subsections.

(1) Direct Format - Write

The simplest format for an $I^{2} \mathrm{C}$ write is direct format. After the start condition $[\mathrm{S}]$, the slave address is sent, followed by an eighth bit indicating a write. The SC5014 ${ }^{12} \mathrm{C}$ then acknowledges that it is being addressed, and the master responds with an 8-bit data byte consisting of the register address. The slave acknowledges and the master sends the appropriate 8-bit data byte. Once again, the slave
acknowledges and the master terminates the transfer with the stop condition [P].

(2) Combined Format - Read

After the start condition [S], the slave address is sent, followed by an eighth bit indicating a write. The SC5014 $I^{2} \mathrm{C}$ then acknowledges that it is being addressed, and the master responds with an 8-bit data byte consisting of the register address. The slave acknowledges and the master sends the repeated start condition [Sr]. Once again, the slave address is sent, followed by an eighth bit indicating a read. The slave responds with an acknowledge and the 8 -bit data from the previously addressed register; the master then sends a non-acknowledge (NACK). Finally, the master terminates the transfer with the stop condition [P].

(3) Stop Separated Reads

Stop-separated reads can also be used. This format allows a master to set up the register address pointer for a read and return to that slave at a later time to read the data. In this format the slave address followed by a write command are sent after a start [S] condition. The SC5014 then acknowledges it is being addressed, and the master responds with the 8 -bit register address. The master sends a stop or restart condition and may then address another slave. After performing other tasks, the master can send a start or restart condition to the SC5014 with a read command. The device acknowledges this request and returns the data from the register location that had previously been set up.

$I^{2} \mathrm{C}$ Direct Format Write

S	Slave Address	W	A	Register Address	A	Data	A
S - Start Condition							
W - Write = ' 0 '	Slave Address - 7-bit						
A - Acknowledge (sent by slave)	Register address - 8-bit						
P - Stop condition							

I^{2} C Stop Separated Format Read

Register Address Setup Access								Master Addresses other Slaves	Register Read Access						
S	Slave Address W	W	A	Register Address	A	P	S	Slave Address B	S / Sr	Slave Address	R	A	Data	NACK	P
	Slave Address	W	A	Register Address		P	S	-	S/Sr	Slave Address	R	A	Data	NACK	
S - Start Condition W - Write = '0' $R-\operatorname{Read}=$ ' 1 ' A - Acknowledge (sent by slave) NAK - Non-Acknowledge (sent by master) Sr - Repeated Start condition P - Stop condition							Slave Address - 7-bit Register address-8-bit Data-8-bit								

I^{2} C Combined Format Read

S	Slave Address	W	A	Register Address	A	Sr	Slave Address	R	A	Data	NACK	P

S - Start Condition	Slave Address - 7-bit
W - Write = 'O'	Register address - 8-bit
R - Read = '1'	Data - 8-bit
A - Acknowledge (sent by slave)	
NAK - Non-Acknowledge (sent by master)	
Sr - Repeated Start condition	
P - Stop condition	

Register Map

Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Value	Description
0x00	CLF	PLL_RDY	$\begin{aligned} & \text { LED_- } \\ & \text { SHORT } \end{aligned}$	LED_ OPEN		OTP	OVP	FAULT	0x00	Fault Status
0×01	WND1	WND0	FAST_ FREQ	FLT_EN		PHASE SHIFT	INT_ DUTY	INT_ PWM	0xB5	Device Control
0x02				IDAC4	IDAC3	IDAC2	IDAC1	IDAC0	0x1F	Analog Dimming Control
0x03							D9	D8	0x00	Dimming Duty Cycle Control 1
0x04	D7	D6	D5	D4	D3	D2	D1	D0	0x00	Dimming Duty Cycle Control 2
0x05	FREQ7	FREQ6	FREQ5	FREQ4	FREQ3	FREQ2	FREQ1	FREQ0	0x00	Dimming Frequency Select
0x06							NPLL17	NPLL16	0x00	PLL Divider MSB
0x07	NPLL15	NPLL14	NPLL13	NPLL12	NPLL11	NPLL10	NPLL9	NPLL8	0x00	PLL Divider LSB2
0x08	NPLL7	NPLL6	NPLL5	NPLL4	NPLL3	NPLL2	NPLL1	NPLLO	0x08	PLL Divider LSB1
0x09	FADE_EN	FADE TYPE				STEP_ MUL2	STEP_ MUL1	STEP_ MULO	0x80	Fade Options
0x0A		FADE RATE6	FADE RATE5	FADE RATE4	FADE RATE3	FADE_ RATE2	FADE RATE1	FADE RATEO	0x00	Fade Rate

Definition of Registers and Bits

Fault Status Register

Bit Field	Definition	Read / Write	Description
$0 \times 00[7]$	CLF	W	Clear latching flags bit. (Set = 1 to clear OTP, LED_OPEN, LED_SHORT and mask OVP for 32 to 64 ss)
$0 \times 00[6]$	PLL_RDY	R	PLL ready status
$0 \times 00[5]$	LED_SHORT	R	One or more LED strings faulted shorted
$0 \times 00[4]$	LED_OPEN	R	One or more LED strings faulted open
$0 \times 00[2]$	OTP	R	Thermal shutdown ($1=$ thermal OTP fault)
$0 \times 00[1]$	OVP	R	Output over-voltage fault ($1=$ OVP)
$0 \times 00[0]$	FAULT	R	OR of all fault conditions ($0=$ no fault, $1=$ fault condition)

Definition of Registers and Bits (continued)
 Device Control Register

Bit Field	Definition	Read / Write	Description
0x01 [7:6]	WIN[1:0]	R/W	A modified duty cycle sent into the PWMI pin replaces the existing saved duty cycle when its deviation from the saved duty is outside the window for two consecutive samples. $00=0$ bits (no window) $01= \pm 1$ bit window $10= \pm 2$ bit window $11= \pm 3$ bit window
0x01 [5]	FAST_FREQ	R/W	Determines the LED PWM dimming frequency selection: 1 = High PWM dimming frequency mode assuming 9-bit PWM duty cycle dimming, dividing the system clock 10 MHz / ($512 \times$ (FREQ+1)). $0=$ Low PWM dimming frequency mode assuming 10-bit PWM duty cycle dimming, dividing the system clock $10 \mathrm{MHz} /(1024 \times$ (FREQ+1)).
0x01 [4]	FLT_EN	R/W	This bit enables fault checking: 0 = LED_OPEN and LED_SHORT faults are not checked. 1 = LED_OPEN and LED_SHORT faults are checked.
0x01 [2]	PH_SHIFT	R/W	Enables String-by-String phase shifting. This is a don't care if INT_PWM $=0$. $0=$ Phase shifting disabled. 1 = Phase shifting is enabled.
0x01 [1]	INT_DUTY	R/W	Determines the duty cycle source. This is a don't care if INT_PWM $=0$. $0=$ LED duty cycle is set by the PWMI input. $1=$ LED duty cycle is set by the 10 -bit duty cycle control registers.
0x01 [0]	INT_PWM	R/W	Sets the LED PWM dimming source. $0=$ LED PWM dimming driven directly from the PWMI input source (direct PWM dimming). 1 = LED PWM dimming driven from an internal oscillator (required for phase-shifted PWM dimming); enables the PLL.

Analog Dimming Control Register

Bit Field	Definition	Read / Write	Description
$0 \times 02[4: 0]$	IDAC [4:0]	R / W	5-bit analog dimming register — The LED current can adjusted in 32 steps from 0mA to max value determined by $\mathrm{R}_{\text {ISET }}$

Bit Field	Definition	Read / Write	Description
$0 \times 03[1: 0]$ $0 \times 04[7: 0]$	$\mathrm{D}[9: 0]$	R / W	10 -bit PWM brightness setting - This value is spread over registers: 0×03 (MSB) and 0×04 (LSB).

Dimming Frequency Select Register

Bit Field	Definition	Read / Write	Description
$0 \times 05[7: 0]$	FREQ [7:0]	R/W	This register sets the LED dimming frequency. FAST_FREQ $=1$, then LED dimming frequency is equal to $10 \mathrm{MHz} /(512 \times$ (FREQ +1$))$. FAST_FREQ $=0$, then LED dimming frequency is equal to $10 \mathrm{MHz} /(1024 \times($ (REQ +1$))$.

PLL Control Registers

Bit Field	Definition	Read / Write	Description
$0 \times 06[1: 0]$ $0 \times 07[7: 0]$ $0 \times 08[7: 0]$	NPLL [17:0]	R / W	These registers set the PLL divider value - The system clock is intended to run at 10MHz; this value divides the system clock down to a frequency comparable to the SYNC signal's frequen- cy to allow PLL synchronization. Typical values are shown below.

F_{IN}	PLL Divider \mathbf{N}	Register Values	FPLL $=(\mathrm{N}+2) \times \mathrm{F}_{\mathrm{IN}}$
60 Hz	169,982	$0 \times 02-0 \times 97-0 \times F E$	10 MHz
1 MHz	8	$0 \times 00-0 \times 00-0 \times 08$	10 MHz

Fade Options Registers

Bit Field	Definition	Read / Write	Description
$0 \times 09[7]$	FADE_EN	R/W	Enables the fading feature. FADE_EN $=0:$ No Fading; Jumps directly to new PWM value. FADE_EN $=1:$ Enables fading.
$0 \times 09[6]$	FADE_TYPE	R/W	Selects the fading type. FADE_TYPE $=0:$ Logarithmic Fading. FADE_TYPE $=1:$ Linear Fading..

Definition of Registers and Bits (continued)

Bit Field	Definition	Read / Write	Description
0x09 [2:0]	STEP_MUL [2:0]	R/W	Used to speed up fade time, when selected LED PWM dimming frequency is low. Define a 2^{N} multiplier of the fade amount. $\begin{aligned} & \text { STEP_MUL[2:0] }=000, N=0, \text { multiplier }=1 \\ & \text { STEP_MUL[2:0] }=001, N=1, \text { multiplier }=2^{1}=2 \\ & \text { STEP_MUL[2:0] }=010, N=2, \text { multiplier }=2^{2}=4 \\ & \text { STEP_MUL[2:0] }=011, N=3, \text { multiplier }=2^{3}=8 \\ & \text { STEP_MUL[2:0] }=100, N=4, \text { multiplier }=2^{4}=16 \\ & \text { STEP_MUL[2:0] }=101 \sim 111, N=5, \text { multiplier }=2^{5}=32 \end{aligned}$

Fade Rate Register

Bit Field	Definition	Read / Write	Description
0x0A [6:0]	FADE_RATE $[6: 0]$	R / W	Defines how often the duty is changed during a fade. Fade rate = PWM Output Rate / (1 + FADE_RATE[6:0])

Outline Drawing — MLPQ-20 4x4

NOTES:

1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

Land Pattern - MLPQ-20 4x4

NOTES:

1. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET.
2. THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD SHALL BE CONNECTED TO A SYSTEM GROUND PLANE. FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR FUNCTIONAL PERFORMANCE OF THE DEVICE.

All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. Semtech assumes no responsibility or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified range.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFESUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contact Information

> Semtech Corporation
> Power Management Products Division
> 200 Flynn Road, Camarillo, CA 93012
> Phone: (805) 498-2111 Fax: (805) 498-3804

